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A nine-sensor hot-wire probe is described which is capable of simultaneously 
measuring the velocity and vorticity vectors with a spatial resolution of about six 
Kolmogorov microscales just above the viscous sublayer in a thick turbulent 
boundary layer at a Reynolds number of R, = 2685. F Ysults from tests of the probe 
performance are presented to show that the three velocity components a t  each of its 
three arrays are measured with sufficient accuracy to allow determination of velocity 
gradients and from them the vorticity vector. Measurements with this probe of 
statistical properties of the velocity and vorticity fields of the turbulent boundary 
layer are given in Part  2 of this paper. When compared to the results of others, they 
further demonstrate the capability of this probe to measure simultaneously the 
velocity and vorticity vectors in turbulent flows of low to moderate Reynolds 
numbers. 

1. Introduction 
The measurement of one or more components of the vorticity vector 

where eiik is the alternating tensor and U, is the velocity vector, has long been an 
elusive goal of experimental turbulence research. The importance of such 
measurements is rather obvious. Vorticity is a defining property of turbulence ; the 
presence of vorticity in a flow is deemed essential to identifying it as truly turbulent 
motion. More than three decades ago, for example, Corrsin & Kistler (1954), analysed 
the properties of the frontier, which they named the viscous superlayer, sharply 
delineating irrotational or non-vortical motion in the free stream of turbulent shear 
flows from the rotational or vortical motion in their interiors. The experimental 
study of the entrainment process at this frontier has been impeded by the absence 
of a method to detect accurately the frontier. The organized motions in shear flows, 
which have been so intensively studied over the past twenty-five years, are for the 
most part vortical motions. The lack of experimental means to measure vorticity also 
has impeded their study. Furthermore, there are other advantages to describing the 
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dynamics of turbulent motion in terms of vorticity. The equation of motion in 
vorticity form, 

in contrast to the NavierStokes equation describing momentum transport, does not 
directly include pressure, which allows some simplification in computation and 
interpretation. Moreover, the vorticity form for expressing the flow dynamics is 
much more amenable to experiments, because pressure measurements within the 
flow have proven to  be even more difficult than vorticity measurements. 

Much insight was gained about turbulence dynamics from measurements of the 
balance of terms in the transport equations for kinetic energy made by Townsend 
(1951), Laufer (1953) and Klebanoff (1954), which are now considered classic. 
Further understanding of these dynamical processes will surely be gained from 
knowledge of the balance of terms in the analogous transport equation for total 
enstrophy $8:, which is a scalar measure of the magnitude of vortical activity. 
Measurements of the balance of these enstrophy terms in a turbulent boundary layer 
will be reported in Part 2 of this paper (Balint, Wallace & Vukoslavaevid 1991). 

After reviewing other hot-wire methods available to measure one or more 
components of the vorticity vector in the next section, the rest of Part 1 will describe 
the construction, calibration and testing of a miniature multi-sensor hot-wire probe. 
This probe utilizes a particular geometric arrangement of nine sensors to obtain 
measurements of all three components of the vorticity vector simultaneously with all 
three components of the velocity vector in turbulent flow. Moreover, the velocity 
measurements account for the non-uniformity of the turbulent flow field across the 
sensing area of the probe. This accounting for the effect of instantaneous velocity 
gradients on velocity measurements with hot wires has never previously been done, 
to the authors' knowledge. It will be shown that i t  requires a minimum of nine 
sensors. Those who wish a more detailed description of the operation of this probe 
can refer to VukoslavEevid, Wallace & Balint (1990). Part 2 will report many 
properties of both the velocity and vorticity vector fields simultaneously measured 
with this probe in a turbulent boundary layer a t  R, = 2685, where 8 is the 
momentum thickness. Conditionally averaged properties of the boundary layer 
obtained from further analysis of this database will be described in a later paper. The 
probe has also recently been utilized in a two-stream turbulent mixing layer, in a 
turbulent grid flow and in an axisymmetric turbulent jet. 

2. Previous measurements of vorticity components with hot-wire 
anemometry 

These measurements all require an accurate estimate of velocity components a t  
closely spaced points in the flow from which vorticity components are obtained by 
determining the circulation around a small planar area or, alternatively, by 
determining the velocity gradients by finite difference. As the spatial distance 
between the velocity measurement locations is reduced, the two methods are 
indistinguishable. With the circulation method, as the circuit becomes larger, the 
measured spatial average vorticity in the circulation plane obviously becomes an 
increasingly poorer estimate of the instantaneous vorticity a t  the centre of the plane. 
A finite-difference approximation of the gradients, on the other hand, assumes that 
second- and higher-order terms are negligible in a Taylor expansion of the velocity 
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field about the measurement point in the flow. This assumption obviously also 
becomes increasingly less valid as the spatial distance over which the gradients are 
estimated increases. 

Complete surveys of these previous hot-wire vorticity component measurements 
as well as measurements which directly sense vorticity or velocity gradients have 
been given by Wallace (1986) and by Foss & Wallace (1989). Here we will summarize 
only briefly the hot-wire methods. 

2.1. Streamwise vorticity 
Kovasznay (1950, 1954) proposed an arrangement of four hot-wire sensors, which act 
as the four legs of a Wheatstone bridge, in order to measure 8,. Kistler (1952) 
analysed the operation of this probe and used it to measure the one-dimensional 
vorticity spectrum and its decay in a turbulent grid flow. Corrsin & Kistler (1954) 
measured the r.m.s. streamwise vorticity distribution in a roughened boundary layer 
with a probe of this design ; Tu and Willmarth also made turbulent-boundary-layer 
measurements with a Kovasznay-type probe (see Willmarth & Lu 1972), but with 
very poor spatial resolution. Kastrinakis (1976) used two Kovasznay-type probes to 
measure the r.m.8. distribution of streamwise vorticity across a fully developed 
turbulent channel flow as well as the two-point correlation coefficient for spanwise 
probe separation. Kastrinakis et al. (1977) used the same two probes to investigate 
wall-layer vortical structures. Kastrinakis, Eckelmann & Willmarth (1979) showed 
that there is a very considerable parasitic sensitivity of values of 8,, as measured by 
the Kovasznay-type probe, to the streamwise and cross-stream velocity components. 
This analysis confirmed what Kistler (1952) had implied. They found that 
contamination by the cross-stream velocity, which increases with mean velocity, can 
be of the same order as that of the instantaneous vorticity to be measured in many 
turbulent flows. 

Vukoslav6evid & Wallace (1981) built and analysed a probe with the same 
geometric arrangement as a Kovasznay-type, but with each wire operated 
independently as had been proposed by Kastrinakis et al. (1979). This modified 
Kovasznay-type probe has two pairs of sensors forming two orthogonal X-arrays 
which, if the conventional assumption of uniform velocity across the probe 
measuring area is made, yields three velocity components as well as the streamwise 
vorticity. Of course the disadvantage is that this design requires twice as many 
supporting prongs as the original Kovasznay design. Although it would seem that 
the parasitic contamination of 8, by the velocity components then could be 
corrected, Vukoslav6evid & Wallace (198 1) emphatically stress that this necessary 
assumption of uniform JlOw across the sensing area of this and other multi-sensor hot-wire 
arrays (including simple X-array probes) i s  invalid in highly turbulent jlows. Large 
internal shear layers often are present instantaneously which contaminate the 
measurement of V and W themselves. This assertion is supported by their 
measurements of the maximum values of aU/ay and aU/az in a boundary layer. The 
presumed presence of these large-amplitude, small-scale internal shear layers had 
previously been assumed by Willmarth & Bogar (1977) to explain anomalies in a 
boundary-layer data at yf = 3 measured with a very small X-array hot-wire probe 
(wire length and spacing of 0.1 mm or 2.5 viscous lengths at R, = 11 700). These 
authors speculated that each of the sensors responded to a quite different velocity 
vector, thereby contradicting the necessary assumption of uniform flow across the 
sensing area for the formulation of the response equations. 

Vukoslavitevid & Wallace (1981) in essence then made explicit the implicit and 
2 FLH 228 
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rather implausible assumption inherent in the design of both the original and the 
modified Kovasznay-type probes, i.e. that these probes are only sensitive to the 
velocity gradients of the streamwise vorticity component but are not sensitive to 
the other four velocity gradients in the cross-stream plane. This modified version of 
the Kovasznay-type probe thus also can yield quite erroneous instantaneous values 
of Q,(t). The discovery of this instrumentation problem in attempting to measure 
streamwise vorticity using hot-wire anemometry was our initial motivation for using 
nine sensors in order to estimate all the velocity gradients and thus to account for the 
non-uniformity of the flow over the probe sensing area. 

Some of the basic statistics of the streamwise vorticity in a turbulent channel flow 
were measured by Kastrinakis & Eckelmann (1983) using this modified Kovasznay- 
type probe with a resolution of about 11.5 viscous lengths or about 6.5 times their 
estimation of the Kolmogorov microscale in the buffer layer. The V and W velocity 
components were systematically underestimated by about 20 % when the probe was 
tested by pitching and yawing it in a uniform irrotational flow. Empirically 
determined calibration factors were therefore necessary to correct their data 
measured in the turbulent flow. Kastrinakis, Nychas & Eckelmann (1983) examined 
the percentage contributions to  the mean-square streamwise vorticity component 
conditioned on the quadrant analysis of the uv product time series with this same 
probe. The autocorrelations of the streamwise vorticity fluctuation w, were obtained 
for positions across the channel, and from these the corresponding integral 
lengthscales for w, and w: were determined. These data were later used by Nychas, 
Kastrinakis & Eckelmann (1985) to estimate components of the production and 
dissipation rate terms in the fluctuating enstrophy transport equation. 

2.2. Cross-stream vorticity 
An array of four hot-wire sensors to measure the transverse vorticity component SZ, 
in turbulent flows has been developed by Foss and his co-workers (Foss 1981 ; FOSS, 
Ali & Haw 1987). Foss et al. (1987) have studied many of the operating attributes of 
this probe and find that the most important problem is that due to the non- 
uniformity of the flow in the spanwise direction, confirming the conclusion of 
VukoslavEevid & Wallace (1981) mentioned earlier. Measurements of the velocity 
fluctuations u and v, the spanwise vorticity fluctuation w,, and the strain rate 
component eZy a t  the entraining boundary of a large plane shear layer have been 
made by Foss, Klewicki 81, Disimile (1986) using a probe of this design. This type 
probe was also used by Falco (1983) to obtain ensemble averages of the spanwise 
vorticity in a smoke-marked turbulent boundary layer. Klewicki & Falco (1990) 
have recently used it to  measure the statistics of the spanwise vorticity component 
a t  R, = 1010-4850 in a boundary layer with a 2.564.64 mm thick sublayer over this 
Reynolds-number range. A new design reduces the spanwise gradient error, and 
results obtained with this new design have been presented by Haw, Foss & Foss 
(1989). 

A five-sensor hot-film probe for the measurement of both the spanwise and normal 
components of vorticity was used by Eckelmann et al. (1977). Although they were 
able to obtain ensemble-average patterns of these two vorticity components utilizing 
the pattern recognition algorithm of Wallace, Brodkey & Eckelmann (1977), for 
y+ > 10 they were not able to  measure accurately and directly the mean velocity 
gradient aO/ay by taking instantaneous U velocity component differences in the 
y-direction over the approximately one Kolmogorov-length sensor separation. It was 
later shown by Bottcher & Eckelmann (1985) that direct measurement of the mean 
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velocity gradient is very difficult to obtain accurately because of probe interference 
of the flow field. 

The normal and spanwise vorticity fluctuation components wy and w, of a 
turbulent wake have been measured, but not simultaneously, by Antonia, Browne & 
Shah (1988) with two hot-wire X-arrays separated in the appropriate cross-stream 
direction by 1.6 mm and utilizing Taylor's hypothesis. The spacing between the wires 
of each array was 1 mm ; the Kolmogorov microscale for this flow, estimated from the 
average isotropic dissipation, was found to be about 0.45 mm a t  the centreline. 

Recently Kim & Fiedler (1989) have designed and used a six-sensor probe to  
determine w, and w,. Their measurements of the standard deviation of the transverse 
vorticity component in a two-stream mixing layer show good agreement with the 
LDV measurements of Lang (1985). 

2.3. The three components of vorticity measured simultaneously 
Besides the nine-sensor hot-wire probe method of measuring all the components of 
the vorticity vector which is the principal subject of this paper, there are only a few 
other methods which attempt to  measure all three components of the vorticity vector 
simultaneously, and none of them utilize hot-wire anemometry. As discussed in Foss 
& Wallace (1989), to  date none of these other methods have operated successfully in 
turbulent flows. 

Although this section is a brief review of existing hot-wire anemometry methods 
for measuring vorticity, it should be noted that methods using direct numerical 
simulations of the Navier-Stokes equation have been developed which determine the 
vorticity vector over the entire flow field. Although these numerical methods are 
presently limited to low Reynolds numbers and simple geometries, they have 
provided the full three-dimensional velocity and vorticity vector fields for fully 
developed channel flow (Kim, Moin & Moser 1987), for the turbulent boundary layer 
a t  R, up to  1410 (Spalart 1988), for homogeneous turbulent shear flow and various 
irrotational straining flows (Rogers & Moin 1987), and for the temporally evolving 
plane mixing layer (Metcalfe et al. 1987). In  Part 2 we will compare some of the 
results obtained from these simulations with our laboratory measurements and those 
of others. 

3. The nine-sensor hot-wire probe 
3.1. Design and construction 

The probe consists of three arrays of three hot-wire sensors oriented a t  45" to  the 
mean flow as seen in the top, side and end view photographs of figure 1 (a+) and in 
the schematic drawing of the supporting prongs and hot-wire arrangement of figure 
1 ( d ) .  The total dimensions of the probe sensing area are 1.7 mm vertically and 
2.2 mm horizontally with an average distance between the sensor centres of about 
1.2 mm, and a distance h between the supporting prongs of any array of 0.5 mm. The 
diameter of the nine tungsten sensors is 2.5 pm and their length is about 0.7 mm, 
giving a length-to-diameter ratio of 280. The probe could easily be made half this 
size; however, the spatial resolution requirements of the probe must be balanced by 
other requirements which affect measurement accuracy. The velocity and vorticity 
measurement accuracy can, of course, increase with decreased array spacing to  the 
extent that  the neglected second- and higher-order terms in the Taylor series 
expansion of the velocity a t  the probe centroid, as described in $4, are important 

2-2 
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All dimensions in mm 
(4 

FIGURE 1 .  (a) Top view photograph of the probe, (6) side view photograph, (c) end view 
photograph ; ( d )  end view schematic. 

over this distance. Their neglect obviously makes the estimate of velocity gradients 
by first-order finite difference less accurate. On the other hand, this measurement 
accuracy will decrease as the spacing between arrays is reduced for two reasons. 
First, the relative accuracy of velocity difference measurements decreases as the 
values of the two velocities to be differenced become close to each other. This is 
because the absolute accuracy of each velocity measurement is independent of 
spatial separation to  the extent that the first-order gradient approximation is nearly 
valid. Second, the relative accuracy of the estimation of the spacing between arrays 
(the denominator in the first-order velocity gradient estimate) also decreases with 
decreased spacing by the same reasoning. In  addition, the effects of aerodynamic and 
thermal interference of these closely spaced prongs and wires must be considered, as 
will be discussed in $5.4. All these competing considerations must be balanced in the 
choice of sensor lengths and spacings. 

Fabrication of the probe is difficult because of its small size, complex design and 
fragility. The main problem is to fit twelve supporting prongs in the smallest feasible 
space while still satisfying accuracy as well as resolution criteria. Arranging the 
prongs with very small distances between them presents two difficult problems : 
preventing electrical shorts between the prongs or between the prongs and the probe 
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body, and maintaining the prongs in place so that they keep the desired array 
geometry. Several technical solutions and various prong materials have been tried. 
The latest version of the probe uses nickel-plated tungsten wire of about 0.25 mm 
diameter for supporting prongs. Short pieces of this wire are tapered from their 
original diameter to a tip diameter of about 0.075 mm by burning them with a micro- 
torch and filing them with emery cloth. The four prongs of each array are then 
drawn through round 4-bore ceramic insulating tubes. These tubes have an outside 
diameter of about 1.6 mm and each hole has a diameter of about 0.3 mm. The three 
ceramic tubes are then placed in a stainless steel tube of about 4.8mm outside 
diameter with one flat side in order to bring the probe as close as possible to the wall. 
The prong tips are manipulated under a measuring microscope into their proper 
geometric position within about a 0.01 mm tolerance and are epoxyed together a t  
one end of the ceramic tubes. Insulated lead wires and miniature plug connectors are 
soldered to the other ends. The ceramic tubes are then sealed into the outer stainless 
steel tube with epoxy. A photograph of the entire probe assembly is shown in figure 
2. After nickel plating the prong tips and electro-cleaning the sensor wire, the 2.5 pm 
diameter, unsheathed, tungsten wire sensors are welded to the tips with a condenser 
storage micro-welding device. When the welding of all nine sensors is complete, the 
probe tip is submerged in the nickel plating solution and the sensors and prong tips 
are plated together for a further short period. This makes the probe structurally 
much more robust while only reducing the sensor resistances by about 10%. 

3.2. Spatial resolution of the probe 
The choice of the probe dimensions described above has been guided by two 
resolution criteria which both need to be satisfied as well as possible consistent with 
the accuracy requirement. In order to estimate with good resolution the velocity 
effectively cooling each sensor, each sensor length should be smaller than the size of 
the smallest turbulent structure encountered in the flow, i.e. the Kolmogorov 
microscale 7. The previously reported estimate of our probe resolution by Balint, 
VukoslavEevid & Wallace (1987) was obtained from a scaling argument of Tennekes 
& Lumley (1972) which assumes, among other things, that production equals 
dissipation rate in the logarithmic layer. This estimate gives a value of = 0.165 mm 
at y+ = 11.2 (our measurement location closest to the wall) for the nominally zero- 
pressure-gradient boundary layer described in Part 2. However, the assumptions 
underlying this estimate do not hold well at this location, as will be seen in Part 2. 
Using our directly measured values of the dissipation rate, which compare well to 
direct numerical simulation values as reported in Part 2, we find that 7 = 0.192 mm 
at y+ = 11.2. Thus the sensor lengths are about 3.6 times the measured Kolmogorov 
microscale at this R, for our measurement location closest to the wall. For positions 
further from the wall, 7 becomes larger as the kinetic energy dissipation rate 6 

becomes smaller, giving better sensor resolution. Clearly the sensors do not resolve 
the very smallest turbulence scales, as is the case for virtually all turbulence 
measurements. 

In order to test the effects of these small scales on our velocity measurements with 
the nine-sensor probe, we built a very small single-sensor probe with a wire length of 
about 0.3 mm, i.e. about 1.67. This probe was calibrated and then used to measure 
the one-dimensional frequency spectrum q5u( f )  of the streamwise velocity component 
at yi w 18 in the boundary layer at the same R, as in the nine-sensor probe 
experiment. This spectrum is compared to that obtained with the nine-sensor probe 
in figure 3. The agreement between the two spectra is excellent with only a small 
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FIGURE 2. Photograph of the probe assembly. 

difference a t  the higher frequencies where the contribution to the energy is two 
decades below the maximum. Additionally, i t  will be seen in Part 2 that our 
streamwise and normal velocity component spectra compare quite well with those of 
Wei & Willmarth (1989) whose LDV measurements resolved the velocity field within 
2.2 Kolmogorov scales in all directions at y+ = 15.9. 

The probe should also be able to resolve adequately the velocity gradient field in 
the flow. A measure of this resolution criterion is the average spacing between sensor 
centres over which gradients are estimated. This average spacing for this probe is 
about 6.3 Kolmogorov microscalcs (or 10.9 viscous lengths) a t  y+ = 11.2 in the 
boundary-layer flow described above. The resolution of a Kovasznay-type vorticity 
probe has been theoretically investigated by Wyngaard (1969) assuming isotropy 



Velocity and vorticity vector fields of a boundary layer. Part 1 33 

10-1 I I I I I I I I I ' I I I I  I 

I I I I l l l l l  I I I I I  
10 30 100 300 

FIQURE 3. Comparison of streamwise velocity component frequency spectra obtained with single- 
sensor (dotted line) and nine-sensor (solid line) probes measured at y+ x 18. Sensor lengths for the 
two probes are 1.6 and 3.6 Kolmogorov lengths respectively. 

f (H4 

and a form of the three-dimensional velocity spectrum given by Pao (1965). He 
concludes that a reasonable design goal for 711, where 1 is the active sensor length, 
is about 0.3 (for d / l  of about 0.7, where d is the spacing between adjacent support 
prongs). With these dimensions, he estimates that the Kovasznay-type probe 
measures about 86% of the true mean-square value of the vorticity. For the nine- 
sensor probe at  y+ = 11.2 in the boundary layer described above, 711 = 0.27. The 
rough equivalent of d / l  for the nine-sensor probe is the ratio of the average spacing 
between sensor centres to the length of the sensors, which is about 1.7. Wyngaard 
(1969) shows that additional attenuation of the vorticity spectrum occurs for 
d / l  > 0.7. He also analysed, with the assumptions mentioned above, the resolution of 
velocity gradient measurements made with two parallel hot wires. For 711 = 0.27 and 
d / l  = 1.7, the measured mean-square gradient is about 65% of the true value. As 
Wyngaard (1969) makes clear however, this analysis should only be used as a design 
guide because the assumptions in his analysis do not completely hold for a boundary 
layer near the wall. Klewicki & Falco (1990) have recently obtained experimental 
support for this analysis, even in the anisotropic conditions of the boundary layer, 
with measurements of the r.m.s. velocity gradient duldy made with two parallel 
sensors with variable separation. They estimate that the previous version of our 
probe (Balint et al. 1987) only attenuates the r.m.s. w, measurement by about 
10-15 % a t  R, = 2100. Furthermore, when we compare our vorticity component 
spectra to those of P. R. Spalart (1990 private communication) in Part 2, it will be 
seen that they agree very well except at Spalart's highest wavenumbers where his 
spectra show some evidence of aliasing. Spalart's direct simulation resolved the 
vorticity field to within about 11.2, 1.2 and 3.8 Kolmogorov scales in the x-, y- and 
z-directions respectively at  y+ = 15. 

From all these considerations, then, it seems reasonable to conclude that, for the 
measurements described in Part 2, the nine-sensor probe is able to resolve all but the 
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smallest turbulent scales in the thick turbulent boundary layer used in this study. A 
complete comparison with the spatial resolution of other laboratory and simulation 
methods is tabulated in Part 2. 

4. Equations governing the operation of the vorticity probe 

possibilities for expressing the effective cooling velocity U, is 
For multi-sensor probes with their sensors inclined to the mean flow, one of the 

where UN, is the velocity component normal to  the sensor in the plane of its 
supporting prongs, U, is the component tangent to the sensor in this plane, and U,,, 
often called the binormal component, is the component normal to the sensor in the 
plane normal to the plane of the prongs. The coefficient k, takes into account, among 
other unknown effects, the aerodynamic blockage resulting from the size and 
arrangement of sensors and prongs; its value is usually somewhat greater than 1.0 
because the fluid accelerates when passing through the prongs. The effective cooling 
velocity can be related to the measured voltage by King's (1914) law. 

The coefficient k ,  varies from about 0.2 for l ld = 200 to about zero for l/d = 600 
(Champagne, Sleicher & Wehrmann 1967). For the nine-sensor probe, the ratio 
l l d  = 280 requires that tangential cooling should be taken into account. A good way 
of doing this as well as accounting for other effects is the concept of an 'effective ' 
sensor angle a, introduced by Bradshaw (1975) and used by Bruun & Tropea (1980). 
For a velocity vector inclined to the direction of the probe axis in the (x, y)-plane of 
figure 1 ( d ) ,  

for sensors in this plane. U is the velocity component in the x-direction, V is the 
component in the y-direction, and a is the angle formed by the probe axis (x- 
direction) and the normal to the sensor in the (2, y)-plane. Similar expressions can be 
written for the sensors in the @,%)-plane. Expression (4) for U, requires that the 
actual value of the angle 01 be known with high accuracy. For multi-sensor probes, 
even with extreme care in the probe construction, sensor angles which are not exactly 
equal to their ideal values will usually occur. Moreover, it is very difficult to get a 
good measurement of these angles. However, introducing an effective angle to be 
determined from calibration in the expression for the normal velocity U ,  will 
circumvent those problems and take into account combined effects such as tangential 
cooling, probe configuration asymmetry, some aerodynamic blockage, and possible 
thermal contamination due to some sensors being affected by the thermal wake of 
others. Hereafter we will use the effective angle a, in order to define the effective 
cooling velocity 

for the sensors in the (x, y)-plane of figure 1 (d ), with similar expressions written for 
the sensors in the (2, %)-plane. 

We can define the effective cooling velocity Uet, on sensor j of array i of the nine- 
sensor probe in terms of the velocity components U,, &, W, at the centre of the probe 
C, (see figure Id)  and their gradients in the plane normal to  the probe axis passing 
through the sensor centres, the distance projected on this plane h between the prong 
tips of any array, the individual sensor effective angle a,(,, and the blockage coefficient 
of sensor j of array i (i = 1 , 2 , 3 ;  j = 1,2 ,3) .  The velocity components U,, 6 ,  W, are 

U, = Ucosa+Vsina (4) 

VZ, = (Ucosa,+Vsina,)2+k,W ( 5 )  
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expanded to first order in a Taylor series about C,, thus giving the following set of 
nine nonlinear algebraic equations in nine velocity and cross-stream velocity 
gradient component unknowns : 

It is therefore clear that nine sensors are required in order to account to first order 
for the non-uniformity of the velocity field across the probe in this plane. In these 
equations V is interchanged with W for j = 2 and 3 .  The 27 Ktjk coefficients are 
determined from calibration. The Kijl coefficients are cosines of the effective angles 
aei,, the Kij2 coefficients are sines of the effective angles, and the Kij3 coefficients 
account for aerodynamic blockage as described above. The C,, ( 1  = 1,2,3,4,5,6) 
constants are positive or negative fractions of the projected prong spacing h for a 
given array geometry. To illustrate (6), consider its form for sensor 1 of array 1 (see 
figure 1 d ) : 

av ( a2 

au 
a2 aY 

(Uel,)' = [ COSateIl ( U0-0.8h-+0.7h- + sin atell V, -0.8h-+0.7h- 

aw). aY 
+kbl l (W,-0 .8h-+0.7h--  aw , (7) 

az 
where kb,, is the blockage coefficient. 

We solve these nine equations using an approach which clearly illustrates the 
character of the equations and the limitations of the probe. In this approach we 
obtain a function of & (velocity component V at an array centroid) and of the gi jk  
(velocity component differences between values at  the centroid of each array and 
values at the centres of the sensors of that array, where i is the array number, j the 
sensor number, and k the velocity component). By successively eliminating U, and 

The gUk are the same for each array, consistent with the first-order gradient 
assumption. In the first step the difference velocities g i j k  are assumed to be zero and 
the Newton-Raphson method is applied to solve (8) for V, at each of the three arrays 
separately. When this is done, the velocity components Ui and W ,  can be obtained for 
each of the three arrays. Having now a first estimate of all components of velocities 
on all arrays, the difference velocities gijk can be computed and (8) can then be solved 
again with the updated values of the qijk for all three arrays. The process is repeated 
until the differences in the magnitudes of the updated values U,, V,, for all three 
arrays and their previous estimates are smaller than a tolerance interval. The 
convergence is typically achieved after three iterations. 

Equation (8) is a nonlinear algebraic function for which the imaginary roots can 
be ignored. There still remains, however, the problem of choosing between the 
remaining possible real roots. The shapes of the function F( V,) are shown by the lines 
in figure 4 (a) for a determined set of quk and for different values of the ratio V / U  with 
W near zero. For the V / U  ratio of -0.36, illustrated by the upper solid line, only one 
root occurs so it is obviously the physical solution. However, for a probe of this 
geometry and orientation with respect to the flow, as V / U  increases the F( V,) curves 
are shifted downward. So for V/U x 0, illustrated by the lower solid line in the figure 
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for example, two real roots occur. One of these two solutions is always larger than a 
value corresponding to the maximum of the curve F ( y ) ,  which we will denote as 
(V/U), , .  This critical value determines the range of uniqueness of the probe. It means 
that the probe can be used in a flow where the largest value of V / U  occurring in the 
flow is expected to be smaller than the critical value, i.e. ( V / v ) ,  < ( V / Q C r .  In  this 
case, although two real roots can be found, only the smaller one exists in the flow. 
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It is necessary to evaluate the factors determining ( V / U ) , ,  and then to construct the 
probe so as to make (VIU),,  as large as possible in order to have the range of 
uniqueness of the solution as large as possible. If W is increased, the curves F(  V,) are 
lifted at  the right-hand extremity, as seen in figure 4(b), making the problem of 
uniqueness less severe. Thus the W = 0 case is the most critical. For a probe with the 
geometrical arrangement of the wires shown in figure 1, the critical ratio can be 
expressed as 

In the ideal case where all the effective angles are the same and equal to 45" and there 
is no blockage effect, i.e. khiz = 1, this value of ( V l U ) , ,  is 0.5. For the ccei and khij 
determined from calibration for the probe of figure 1, the average value of ( f / U ) , ,  for 
all three arrays is 0.36, corresponding to an angle of attack of the velocity vector to 
the probe of 19.8". 

Kreplin & Eckelmann (1979) have reported the angular deviation of the 
instantaneous velocity components from the mean flow direction in a turbulent 
channel flow. The probability density distribution of these deviations are available 
for distances from the wall ranging from about y+ = 3.5-200. A maximum deviation 
of about + 16" and - 10" is reported for the positive and negative v-fluctuations at  
y+ = 10, the probability density being asymmetric and displaying a positive 
skewness. From these estimates we can deduce values of ( V / U ) ,  x 0.3 at y+ = 10 and 
( V / U ) ,  x 0.25 at y+ = 40. Thus, although the condition ( V / U ) ,  < (V/U),, is satisfied 
for the average of all three arrays of our probe, the values of (V /U) ,  become very 
close to (V/U) , ,  = 0.36 as the wall is approached. 

The fact that ( V / U ) ,  can be near ( V / U ) , ,  may also lead to an additional problem. 
Any error in measuring the E ,  voltage values moves the F (  V,) curve up or down, thus 
changing its intersection with the abscissa and resulting in an error in the 
determination of V,. It is obvious that the error will be highest near (V/U),, 
(maximum of P( V,)) because of the small slope in that region. It can also happen that 
the measurement error is large enough to cause the curve to fall under the abscissa 
and therefore to give no solution, even when the criterion ( V / U ) ,  < (V/U) , ,  is 
satisfied. This situation is illustrated by the dashed line in figure 4(a) for 
V / U  = +0.36. Although it is then known that the real solution is close to the critical 
one, i.e. V / U  x (V/U), , ,  the dashed line in figure 4(a) shows that the method does not 
converge and no solution is found. 

It is worthwhile to attempt to enlarge the range of uniqueness as much as possible. 
It can be increased by changing the geometrical arrangement of the sensors, but this 
is a t  the cost of making determination of the calibration coefficients much more 
complex. Taking that into account and having a relatively small number of cases 
where V / U  x (VIU),,  (aty+ = 11.2,7.1%,y+ = 18.3,2.5% and y+ = 27.4,0.9%), i.e. 
where the solution does not converge, we decided to keep the geometrical 
arrangement of figure 1 at present. We plan in the future to continue the 
development of the probe by altering this geometry and studying the effects. 

The velocity at the centre of the probe is obtained from the velocities measured at 
each of the individual arrays and the cross-stream gradients determined at  each time 
step. We can define, for example, the velocity component U, (streamwise direction) 
for this probe as 

au au 
aY aZ U, = U3+l.2h-+0.8h-. 
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Similar expressions are obtained for V,  and W, by substituting for U with V and W ,  
respectively, in (10). 

5. Additional technical problems 
5.1.  Streamwise velocity gradients 

The nine-sensor probe is not capable of directly measuring velocity gradients in the 
streamwise direction. In order to obtain these gradients, Taylor's hypothesis, which 
relates time derivatives to streamwise spatial derivatives by the relation 
a/ax = - 1/U, slat, must be used. Here U, is a convection velocity which is often 
taken as the local mean velocity, but other choices have been used. The streamwise 
vorticity component can be determined directly from the measurements with this 
probe, but the normal and spanwise components involve the terms aW/ax and aV/i3x 
which must be obtained from Taylor's hypothesis. Piomelli, Balint & Wallace (1989) 
have compared the r.m.s. values of 

and the correlation coefficient between qi and T,, for a large-eddy simulation (LES) 
of a turbulent channel flow in order to evaluate the magnitude and phase 
relationships of the terms in Taylor's hypothesis. They find negligible differences 
everywhere above the buffer layer between the r.m.s. values of the terms in (1  1 )  and 
a 0.95 or greater correlation coeficient between Tlj and E3. Somewhat larger 
differences do appear in the range y f  = 15-30, but these differences are not very 
substantial even there. This LES evaluation gives strong support to  Taylor's hy- 
pothesis. Comparing r.m.s. values of aul/axk,  ( k  = 1,2,3)  and of au3/axl, ( j  = 1,2,3) 
from this LES with values from the direct simulation of Kim et al. (1987) and with 
measurements with an earlier version of our nine-sensor probe, Piomelli et al. (1989) 
show that the LES is sufficiently reliable to evaluate Taylor's hypothesis in and 
above the buffer layer even though the subgrid scales, which in the study cited 
accounted for less than 8 % of the total Reynolds stress, must be modelled. Thus, the 
use of Taylor's hypothesis for the boundary-layer measurements reported in Part 2 
appears quite justified. 

5.2. Voltage corrections due  to ambient temperature variation 
The anemometer bridge circuit output is sensitive to variations in the ambient 
temperature of the open-return wind tunnel used in this work; this is an important 
effect, especially when the bridge is operated a t  the low overheat ratio necessary to 
minimize thermal interference (1.22 in the experiment reported herein). For a small 
temperature variation (2-3 "C) the bridge output voltage is nearly linear with 
temperature, as seen in figure 5 for sensor 1 of array 1.  The temperatures were 
measured over an 1 1  h interval and varied from 26.S29.0  "C. Thus the effect of 
temperature variation can be easily corrected for each value of the digitized voltages 
if the ambient temperature is also sampled. I n  the experiment reported in Part 2 the 
temperature ranged between 27.2-28.0 O C  when turbulence data were recorded. 
These temperatures were continuously monitored with a digital thermistor 
thermometer. Tests run on several calibration data files showed that the K,, 
calibration coefficients of (6) were virtually independent of the reference temperature 
to which the measured voltages were corrected. 
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FIGURE 5. Variation of the anemometer bridge voltage with temperature for sensor ( 1 , l )  
during calibration and data acquisition. 

5.3. Cross-talk effects through common prongs 

We chose to use a common prong for the three sensors of each array to reduce the 
aerodynamic disturbance from the presence of the probe. Of course this can 
introduce electrical cross-talk between the anemometer circuits. Previous experience 
showed that the common-prong resistances should be about 0.1 G? to avoid 
anemometer bridge circuit instabilities and significant cross-talk in the measured 
voltages for the overheat ratio of 1.22 used in this study. In an earlier version of the 
probe, the common-prong resistances were lowered by nickel plating them more than 
the surrounding prongs. The requirement was that the plating should be thick 
enough to bring the resistance down but still leave a prong thickness that will not 
substantially increase the aerodynamical blockage. To reduce the plating thickness 
for the probe used in this investigation each common tungsten prong was first plated 
with copper. This significantly decreased the resistance to about 0.08 SZ with a much 
smaller increase in prong diameter compared to nickel plating. Then the tips of the 
prongs were plated with a thin layer of nickel in order to facilitate welding of the 
tungsten sensors. This procedure eliminated the circuit instabilities and also 
decreased the common prong thickness. 

To check for any evidence of electrical cross-talk through the common ground 
connection, a rather simple test was made as illustrated in figure 6. A variable 
common ground resistance between two independent single-sensor probes was 
introduced. In order to simulate the nine-sensor probe case, the single-sensor probes 
used in the test had 2.5 pm diameter tungsten sensors. The common resistance was 
adjusted to 0.08 SZ (which is the actual value of the nine-sensor component prongs 
resistances). The anemometer bridges were then balanced independently at  an 
overheat ratio of 1.22. Probe 1 was positioned in the wind tunnel free-stream core 
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FIGURE 6. Procedure for testing for electrical cross-talk through a variable common resistance. 

and probe 2 was lowered into the turbulent boundary-layer wall region. Output 
signals of the probes were monitored on storage oscilloscopes, first with one probe off 
while operating the other and then with both probes operating simultaneously. No 
instabilities occurred in circuits 1 or 2 while in simultaneous operation and no 
fluctuations appeared on the signal from probe 1 in the free-stream flow. It was 
apparent that the fluctuations sensed by probe 2 do not significantly contaminate 
circuit 1 through the common prong. The common-prong resistance was then 
increased in 0.01 0 steps. No contamination of the free-stream flow signal was seen 
up to a value of 0.13 0; at that common-prong resistance value the circuits became 
unstable when operated together. 

5.4. Aerodynamical blockage effects and thermal contamination 
In the case of a horizontal single-sensor probe, the blockage effect is due to the flow 
through the prongs being accelerated as the pitch angle increases, thereby changing 
the wire cooling at higher pitch angles of attack than would have occurred if the 
prongs were not present, as illustrated in figure 7 (a) .  For the same prong spacing, the 
thicker the prongs the stronger will be the blockage effect. In order to reduce the 
blockage effects, the prong diameters cannot be reduced too much because very thin 
prong tips will mechanically vibrate as well as begin to act as sensors themselves. The 
latter problem has adverse effects on blockage reduction as well as undermining the 
assumptions on which the sensor response was determined. Therefore one should 
determine a prong thickness and spacing that will minimize this effect. 

Owing to the complex geometrical configuration of the nine-sensor probe, thermal 
contamination and aerodynamical blockage effects are very difficult to separate. 
Instead, we decided to break up the problem into basic geometrical configurations, 
each of which was simulated by a pair of prongs and a single sensor. For a 2.5 pm 
sensor diameter, prong spacings of 0.5 and 1 mm and prong tip thicknesses of 
0.05 mm and 0.1 mm were tried with two test probes. The probes were pitched and 
yawed a t  free-stream velocities ranging from about 1.5 to 3.5 m/s. Blockage 
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FIGURE 7. Typical voltage response of an (x,z)-plane sensor during pitch. Solid lines: ideal 
response of a sensor (with blockage equal to unity and effective angle of 45'); (a) 0,  measured 
response for a probe with thick prongs and high blockage coefficients ; (b) 0,  measured asymmetric 
response due to thermal interference within an array of the nine-sensor probe. 

coefficients and cooling response curves indicated that a prong spacing of about 
0.5-0.6 mm and a tip thickness of about 0.05-0.08 mm gave an average blockage 
coefficient of about 1.15 for the single sensor probes. One should anticipate higher 
blockage values for multi-prong configurations with the same spacing and thickness 
(kb of about 1.3 to 2.0). However, even these k, values prevent non-uniqueness or 
non-convergence problems. Furthermore, with these prong thicknesses and spacings, 
the data did not indicate that the prong tips were acting as sensors at the higher pitch 
angles of 15'-20". 

The thermal contamination was checked by comparing the pitch/yaw response 
curves when the nine-sensor probe was tested with all three arrays operating to the 
curves obtained with only one or with two arrays operating. This showed no evidence 
of thermal contamination from array to array. However, there is thermal 
contamination within an individual three-sensor array, even at the low overheat 
used here ; the effect is to distort the symmetry of pitch response for sensors in the 
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FIGURE 8. Voltage response of sensor ( 1 , l )  during yaw. Solid line, ideal response of a sensor (with 
blockage equal to unity and effective angle of 45') ; dotted line, calibration fit for negative yaw ; 
dashed line, calibration fit for positive yaw. 

(x,z)-plane of figure l ( d )  (or of yaw response of sensors in the (x,  y)-plane) as 
illustrated in figure 7 ( b ) .  

The thermal contamination acts like an effective aerodynamical blockage acting 
on either the negative or the positive pitch response of an (z, z)-plane sensor or on the 
yaw response of an (x ,  y)-plane sensor. In  fact, both aerodynamical and thermal 
effects can be lumped into apparent 'positive ' or ' negative ' blockage coefficients 
with values due to  asymmetry of 2.0 or more (here 'positive' or 'negative' refer to  
the sign of the pitchlyaw angle and not to the sign of the blockage coefficient). 

6. Probe calibration method 
The probe was placed in the nominally irrotational free-stream core of the wind 

tunnel and the calibration coefficients were obtained by pitching and yawing the 
probe for mean speeds corresponding to y+ measurement locations in the boundary 
layer as illustrated by the yaw calibration response of sensor ( 1 , l )  in figure 8. It was 
also aligned with the mean flow and the mean speed varied over a range expected for 
the boundary layer as illustrated for sensor ( 1 , l )  in figure 9. The calibration 
coefficient set is thus determined for flow conditions that mimic the turbulent flow 
conditions as closely as possible. These coefficients are found by least-square fits of 
calibration measurements over the range of variation of U,  V and W (i.e. U,, 9, and 
8, where Urn is the free-stream velocity and g5 and 8 are the pitch and yaw angles) 
expected in the turbulent flow. A total of 36 coefficients result from those fits. 

The ideal curves E,, versus yaw angle 8, for sensor 1 of array i, or E ,  versus pitch 
angle 4 for sensor (j = 2,3)  of array i should be symmetrical because they are 
expected to approximately follow ' cosine law ' cooling. The experimental curves 
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FIGURE 9. Linear fit of sensor ( 1 , l )  E2 V.S. U& response during free-stream velocity variation. 
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FIGURE 10. Voltage response of sensor ( 1 , l )  during pitch. Solid line, calibration fit for middle- 
range pitch ; dotted line, calibration fit for negative pitch ; dashed line, calibration fit for positive 
pitch. 

show a slight asymmetry, as mentioned above, and suggest that the ‘blockage ’ effect 
is not always the same when the velocity vector attacks the probe axis a t  a positive 
or negative angle in yaw or pitch. For example, the voltage response of sensor (1, I) 
during yaw in figure 8 shows this slight asymmetry (the solid line in the figure is the 



44 P. Vukoslavc'evic', J .  M .  Wallace and J.-L. B a h t  

response of an ideal sensor with an effective angle a, = 45' and a blockage coefficient 
kbll = 1.0). This observation suggested the possibility of defining positive angle 
blockage coefficients kii, and negative angle blockage coefficients hibil for positive or 
negative values of pitchlyaw angles greater than or equal to 10" as mentioned before 
in 55.4. For sensor (1, I) ,  kil ,  = 2.38 and kil l  = 2.35. 

Drawing on our experience with the 'positive ' and 'negative ' blockage coefficients, 
we extended this approach to other coefficients, e.g. the King's law slopes and 
effective angles. The least-square fits of calibration data were divided into three 
calibration ranges : high negative pitch/yaw angles, near zero pitchlyaw angles and 
high positive pitchlyaw angles, as seen in figure 10 for pitch. For the data in figure 
10, the effective angles in these three ranges are 36.0', 39.9' and 46.1' respectively. 
In effect, this means that the influence of the effective cooling velocity on these 
coefficients is taken into account as suggested by Bruun & Tropea (1980). The 
drawback to using positive and negative values of the calibration coefficients is, of 
course, that the data analysis program now must chose between three sets of 
calibration coefficients each time it solves (8).  

7. Testing the accuracy of the probe 
7.1. Tests 

Test programs evaluate the errors in velocity components as well as the spurious 
gradients and spurious vorticity components measured by the probe during the 
calibration in irrotational flow. Figures 11 (a )  and 11 (b )  show, as solid lines, the 
velocity components induced during calibration by variation of the tunnel's speed 
and pitch and yaw angles respectively. The data points shown are those obtained 
using the measured calibration voltages and the calibration coefficients found as 
described in $6. For this particular set of test data, a slight probe misalignment of 
+ 1.5" in pitch and -2' in yaw is seen in figures 11 (a )  and 11 ( b )  where V and Ware 
not exactly zero for the tunnel speed variation or a t  zero pitch and yaw respectively. 
Additional terms were incorporated in the cooling equations in order to account for 
these alignment errors. These corrections, however, are valid only for small angular 
misalignments (less than 3'). The measured velocities match the induced velocities 
very well for all speeds and angles of attack except a t  the quite high pitch angle of 
+ 20'. Figure 12 shows the spurious values of the vorticity components which result 
from these errors in the measurement of the induced velocity components in the free- 
stream irrotational flow where the vorticity vector should be zero. Thus, it  is obvious 
that small velocity errors can be amplified into not insignificant spurious vorticity 
errors. These values are a good indicator of the entire measurement system noise. 

Figure 13 (a<) shows the probability density distributions of the spurious 
vorticity components measured in the free-stream core of the wind tunnel after the 
turbulent boundary-layer experiment described in Part 2. The widths of these 
distributions are another measure of the noise of the entire measuring system. The 
two cross-stream components wy and w, have no spurious values larger than about 
30s-l. The streamwise component w, has rare occurrences of spurious values of 
about 90 s-l. These values give a high signal-to-noise ratio when compared to peak 
values of f 1200 s-l near the wall in the boundary layer. The fact that the noise in 
the w, signal is larger than that in the wy and w, signals may be due to the necessary 
use of Taylor's hypothesis in the latter. These distributions are qualitatively 
consistent with the relative magnitudes of the spurious vorticity components found 
in the calibration data of figure 12. The probability density distributions of the 
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FIGURE 1 1 .  Induced and measured velocity components during (a) tunnel speed variation, and ( b )  
pitch and yaw variations at constant speed. Solid lines, induced values; 0 ; measured streamwise 
component U ,  0, measured normal component V ,  A, measured spanwise component W .  
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FIGURE 12. Spurious vorticity components sensed in the free stream during the calibration 
0,  streamwise component a,, 0, normal component Q,; A, spanwise component a,. 

spurious vorticity components shown in figure 13(a-c) will be compared in Part 2 to 
the distributions measured in the boundary layer for the turbulent vorticity 
components. 

Figure 14 compares the distribution of the mean velocity gradient ao/ay (of the 
turbulent boundary layer described in Part 2) measured directly with the nine-sensor 
probe (the instantaneous aU/ay values are averaged for the data set at each yf 
position) with the derivative of a fit of published mean velocity measurements given 
by Spalding (1961). Also shown as a solid line is the derivative of the logarithmic law 
for y+ > 30 with constants given by Coles (1962). As mentioned earlier, it has been 
shown by Biittcher & Eckelmann (1985) that i t  is very difficult to obtain accurately 
the mean velocity gradient from the average of velocity differences when they are 
directly measured over small distances of only a few Kolmogorov microscales. 
Therefore, this is a good test of the capability of the nine-sensor probe to resolve 
instantaneous velocity gradients accurately. The comparison in figure 14 shows just 
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FIGURE 13. Probability density functions of fluctuating vorticity components measured in the 
irrotational free stream. (a) P(o, ) ,  ( b )  P(w,), ( c )  P(o,). 

how well the probe can directly measure this mean gradient. For y+ < 50 the directly 
measured gradients are within 10 % or less of the derivatives of the curve fits of the 
mean velocity. This relative error increases, of course, as the absolute magnitude 
decreases with increasing distance from the wall. 

7.2 .  Error estimates 
The free-stream velocity in the tunnel was measured with a Pitot tube connected to 
a Barocel electronic monometer. The pressure was determined with an accuracy of 

Torr thus giving an accuracy of 1 '?LO for Urn in the 1.0-3.5 m/s speed range. The 



48 P. Vukoslavckvic', J .  M .  Wallace and J.-L. B a h t  

1 .o t I I I I I I I  I I I I I l l l l  I I I / I l l  

, 

0 I I I I l l 1  .I rl- 1 1  J 

1 3 10 30 100 300 1 om 
Y +  

FIQURE 14. Distribution of.the mean velocity gradient ao/ay across the boundary layer. Dotted 
line, Spalding (1961); solid line, Coles (1962); 0 ,  values directly measured by the nine-sensor 
probe. 

accuracy of the velocity and vorticity fluctuation measurements were estimated by 
applying the Newton-Raphson algorithm to the free-stream velocity variation and 
pitch/yaw calibration data, as mentioned previously. During the free-stream 
calibration (figure 11 a )  the error for the streamwise component U in the 1.0-3.5 m/s 
speed range was from 0.005-0.035 m/s. For the pitch/yaw calibration (figure l l b ) ,  
at 1.55 m/s, the average absolute errors for velocity components U, V ,  and W were 
0.015, 0.016, 0.006 m/s, respectively, over the & 15' range. The average spurious 
vorticity component values resulting from these velocity errors (figure 12) occur- 
ring in the calibration in the free-stream core were Dx = 17.1 s-l, ay = 7.1 s-l, 
az = 7.9  s-l, respectively. These average spurious values correspond respectively to 
12.0%, 4.6%, 4.4% of the average of the r.m.s. vorticity fluctuations w z ,  wy, w, 
measured over the y+ = 13-50 region of the boundary layer as described in Part 2. 
When the free-stream core was directly sampled as one of the points in the boundary- 
layer experiment (figure 13 a+), the measured average spurious vorticity values were 
fix = 18.5 s-l, fir = 6.6 s-l, and Dz = 8.1 s-l, corroborating the result obtained from 
calibration. 

8. Conclusions 
This paper (Part 1) describes a small nine-sensor hot-wire probe capable of 

simultaneously measuring the velocity and vorticity vectors in turbulent flow. 
Moreover, for the first time the velocity vector is measured while accounting for the 
variation of the velocity field across the sensing area of the probe. The distance over 
which velocity gradients are determined is about 6.3 Kolmogorov microscales or 10.9 
viscous lengths when positioned at yf = 11.2 in a thick boundary layer a t  R, = 2685. 
For a test case, where a set of velocity components similar to those occurring in the 



Velocity and vorticity vector Jields of a boundary layer. Part 1 49 

boundary layer are induced in a uniform irrotational flow similar to that occurring 
in the boundary layer, each of the three arrays of the probe are able to determine U,  
V ,  and W within an average absolute error of 0.016 m/s or less. These errors result 
in average vorticity component errors of 12.0%, 4.6% and 4.4% of the average of 
the r.m.s. vorticity fluctuations w,, wy, and w, respectively in the y+ = 13-50 region 
of the boundary layer. The probe is capable of directly measuring the mean velocity 
gradient of the turbulent boundary layer (a stringent test) with very good accuracy. 
Therefore this nine-sensor probe appears to be suitable for measurements of the 
statistical properties of the boundary-layer vorticity field with acceptable resolution 
and accuracy. These measurements of the turbulent vorticity fluctuations will be 
reported in Part 2 of this paper. 
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